Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Int J Nanomedicine ; 18: 225-241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36660337

RESUMO

Background: Gallium (III) metal-organic complexes have been shown to have the ability to inhibit tumor growth, but the poor water solubility of many of the complexes precludes further application. The use of materials with high biocompatibility as drug delivery carriers for metal-organic complexes to enhance the bioavailability of the drug is a feasible approach. Methods: Here, we modified the ligands of gallium 8-hydroxyquinolinate complex with good clinical anticancer activity by replacing the 8-hydroxyquinoline ligands with 5-bromo-8-hydroxyquinoline (HBrQ), and the resulting Ga(III) + HBrQ complex had poor water solubility. Two biocompatible materials, bovine serum albumin (BSA) and graphene oxide (GO), were used to synthesize the corresponding Ga(III) + HBrQ complex nanoparticles (NPs) BSA/Ga/HBrQ NPs and GO/Ga/HBrQ NPs in different ways to enhance the drug delivery of the metal complex. Results: Both of BSA/Ga/HBrQ NPs and GO/Ga/HBrQ NPs can maintain stable existence in different solution states. In vitro cytotoxicity test showed that two nanomedicines had excellent anti-proliferation effect on HCT116 cells, which shown higher level of intracellular ROS and apoptosis ratio than that of cisplatin and oxaliplatin. In addition, the superior emissive properties of BSA/Ga/HBrQ NPs and GO/Ga/HBrQ NPs allow their use for in vivo imaging showing highly effective therapy in HCT116 tumor-bearing mouse models. Conclusion: The use of biocompatible materials for the preparation of NPs against poorly biocompatible metal-organic complexes to construct drug delivery systems is a promising strategy that can further improve drug delivery and therapeutic efficacy.


Assuntos
Antineoplásicos , Portadores de Fármacos , Gálio , Grafite , Nanopartículas Metálicas , Oxiquinolina , Animais , Humanos , Camundongos , Materiais Biocompatíveis , Linhagem Celular Tumoral , Portadores de Fármacos/síntese química , Gálio/química , Grafite/química , Células HCT116 , Nanopartículas Metálicas/análise , Nanopartículas/análise , Oxiquinolina/química , Tamanho da Partícula , Soroalbumina Bovina/farmacologia , Água , Antineoplásicos/síntese química , Antineoplásicos/química
2.
Molecules ; 27(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36296513

RESUMO

Based on the Warburg effect and the increased demand for glucose by tumor cells, a targeted drug delivery strategy was developed. A series of new glycoconjugates with increased ability to interact with GLUT transporters, responsible for the transport of sugars to cancer cells, were synthesized. Glycoconjugation was performed using the C-6 position in the sugar unit, as the least involved in the formation of hydrogen bonds with various aminoacids residues of the transporter. The carbohydrate moiety was connected with the 8-hydroxyquinoline scaffold via a 1,2,3-triazole linker. For the obtained compounds, several in vitro biological tests were performed using HCT-116 and MCF-7 cancer cells as well as NHDF-Neo healthy cells. The highest cytotoxicity of both cancer cell lines in the MTT test was noted for glycoconjugates in which the triazole-quinoline was attached through the triazole nitrogen atom to the d-glucose unit directly to the carbon at the C-6 position. These compounds were more selective than the analogous glycoconjugates formed by the C-1 anomeric position of d-glucose. Experiments with an EDG inhibitor have shown that GLUTs can be involved in the transport of glycoconjugates. The results of apoptosis and cell cycle analyses by flow cytometry confirmed that the new type of glycoconjugates shows pro-apoptotic properties, without significantly affecting changes in the distribution of the cell cycle. Moreover, glycoconjugates were able to decrease the clonogenic potential of cancer cells, inhibit the migration capacity of cells and intercalate with DNA.


Assuntos
Antineoplásicos , Quinolinas , Humanos , Antineoplásicos/química , Açúcares , Glicoconjugados/química , Oxiquinolina/química , Quinolinas/farmacologia , Quinolinas/química , Carboidratos , Triazóis/farmacologia , Glucose , Carbono , Nitrogênio , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade
3.
J Biol Chem ; 298(9): 102336, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35931111

RESUMO

Mitochondrial chelatable iron contributes to the severity of several injury processes, including ischemia/reperfusion, oxidative stress, and drug toxicity. However, methods to measure this species in living cells are lacking. To measure mitochondrial chelatable iron in living cells, here we synthesized a new fluorescent indicator, mitoferrofluor (MFF). We designed cationic MFF to accumulate electrophoretically in polarized mitochondria, where a reactive group then forms covalent adducts with mitochondrial proteins to retain MFF even after subsequent depolarization. We also show in cell-free medium that Fe2+ (and Cu2+), but not Fe3+, Ca2+, or other biologically relevant divalent cations, strongly quenched MFF fluorescence. Using confocal microscopy, we demonstrate in hepatocytes that red MFF fluorescence colocalized with the green fluorescence of the mitochondrial membrane potential (ΔΨm) indicator, rhodamine 123 (Rh123), indicating selective accumulation into the mitochondria. Unlike Rh123, mitochondria retained MFF after ΔΨm collapse. Furthermore, intracellular delivery of iron with membrane-permeant Fe3+/8-hydroxyquinoline (FeHQ) quenched MFF fluorescence by ∼80% in hepatocytes and other cell lines, which was substantially restored by the membrane-permeant transition metal chelator pyridoxal isonicotinoyl hydrazone. We also show FeHQ quenched the fluorescence of cytosolically coloaded calcein, another Fe2+ indicator, confirming that Fe3+ in FeHQ undergoes intracellular reduction to Fe2+. Finally, MFF fluorescence did not change after addition of the calcium mobilizer thapsigargin, which shows MFF is insensitive to physiologically relevant increases of mitochondrial Ca2+. In conclusion, the new sensor reagent MFF fluorescence is an indicator of mitochondrial chelatable Fe2+ in normal hepatocytes with polarized mitochondria as well as in cells undergoing loss of ΔΨm.


Assuntos
Corantes Fluorescentes , Quelantes de Ferro , Mitocôndrias , Animais , Cálcio/metabolismo , Cátions Bivalentes/análise , Células Cultivadas , Fluorescência , Corantes Fluorescentes/química , Quelantes de Ferro/análise , Camundongos , Mitocôndrias/química , Proteínas Mitocondriais/química , Oxiquinolina/química , Rodamina 123 , Tapsigargina/farmacologia
4.
J Med Chem ; 65(11): 7729-7745, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35613553

RESUMO

A recently proposed strategy to overcome multidrug resistance (MDR) in cancer is to target the collateral sensitivity of otherwise resistant cells. We designed a library of 120 compounds to explore the chemical space around previously identified 8-hydroxyquinoline-derived Mannich bases with robust MDR-selective toxicity. We included compounds to study the effect of halogen and alkoxymethyl substitutions in R5 in combination with different Mannich bases in R7, a shift of the Mannich base from R7 to R5, as well as the introduction of an aromatic moiety. Cytotoxicity tests performed on a panel of parental and MDR cells highlight a strong influence of experimentally determined pKa values of the donor atom moieties, indicating that protonation and metal chelation are important factors modulating the MDR-selective anticancer activity of the studied compounds. Our results identify structural requirements increasing MDR-selective anticancer activity, providing guidelines for the development of more effective anticancer chelators targeting MDR cancer.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacologia , Quelantes/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Bases de Mannich/química , Bases de Mannich/farmacologia , Oxiquinolina/química , Oxiquinolina/farmacologia , Relação Estrutura-Atividade
5.
Chem Biol Interact ; 353: 109806, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34999051

RESUMO

Hepatocellular carcinoma (HCC) is an extremely aggressive malignancy that ranks as the sixth-leading cause of cancer-associated death worldwide. Recently, various epigenetic mechanisms including gene methylation were reported to be potential next era HCC therapeutics and biomarkers. Although inhibition of epigenetic enzymes including histone lysine demethylase 4 (KDM4) enhanced cell death in HCC cells, the detailed mechanism of cell death machinery is poorly understood. In this study, we found that ML324, a small molecule KDM4-specific inhibitor, induced the death of HCC cells in a general cell culture system and 3D spheroid culture with increased cleavage of caspase-3. Mechanistically, we identified that unfolded protein responses (UPR) were involved in ML324-induced HCC cell death. Incubation of HCC cells with ML324 upregulated death receptor 5 (DR5) expression through the activation transcription factor 3 (ATF3)-C/EBP homologous protein (CHOP)-dependent pathway. Moreover, we identified BIM protein as a mediator of ML324-induced apoptosis using CRISPR/Cas9 knockout analysis. We showed that the loss of Bim suppressed ML324-induced apoptosis by flow cytometry analysis, colony formation assay, and caspase-3 activation assay. Interestingly, BIM protein expression by ML324 was regulated by ATF3, CHOP, and DR5 which are factors involved in UPR. Specifically, we confirmed the regulating roles of KDM4E in Bim and CHOP expression using a chromatin immune precipitation (ChIP) assay. Physical binding of KDM4E to Bim and CHOP promoters decreased the response to ML324. Our findings suggest that KDM4 inhibition is a potent anti-tumor therapeutic strategy for human HCC, and further studies of UPR-induced apoptosis and the associated epigenetic functional mechanisms may lead to the discovery of novel target for future cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteína 11 Semelhante a Bcl-2/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Oxiquinolina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Antineoplásicos/química , Proteína 11 Semelhante a Bcl-2/genética , Benzamidas/química , Benzamidas/farmacologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Neoplasias Hepáticas/patologia , Oxiquinolina/química , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/antagonistas & inibidores , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
6.
Molecules ; 26(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34770772

RESUMO

Methyl-substituted 8-hydroxyquinolines (Hquin) were successfully used to synthetize five-coordinated oxovanadium(IV) complexes: [VO(2,6-(Me)2-quin)2] (1), [VO(2,5-(Me)2-quin)2] (2) and [VO(2-Me-quin)2] (3). Complexes 1-3 demonstrated high catalytic activity in the oxidation of hydrocarbons with H2O2 in acetonitrile at 50 °C, in the presence of 2-pyrazinecarboxylic acid (PCA) as a cocatalyst. The maximum yield of cyclohexane oxidation products attained was 48%, which is high in the case of the oxidation of saturated hydrocarbons. The reaction leads to the formation of a mixture of cyclohexyl hydroperoxide, cyclohexanol and cyclohexanone. When triphenylphosphine is added, cyclohexyl hydroperoxide is completely converted to cyclohexanol. Consideration of the regio- and bond-selectivity in the oxidation of n-heptane and methylcyclohexane, respectively, indicates that the oxidation proceeds with the participation of free hydroxyl radicals. The complexes show moderate activity in the oxidation of alcohols. Complexes 1 and 2 reduce the viability of colorectal (HCT116) and ovarian (A2780) carcinoma cell lines and of normal dermal fibroblasts without showing a specific selectivity for cancer cell lines. Complex 3 on the other hand, shows a higher cytotoxicity in a colorectal carcinoma cell line (HCT116), a lower cytotoxicity towards normal dermal fibroblasts and no effect in an ovarian carcinoma cell line (order of magnitude HCT116 > fibroblasts > A2780).


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Oxiquinolina/química , Vanádio/química , Álcoois/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Complexos de Coordenação/síntese química , Humanos , Hidrocarbonetos/química , Concentração Inibidora 50 , Modelos Moleculares , Estrutura Molecular , Oxirredução , Peróxidos/química , Espécies Reativas de Oxigênio/metabolismo , Análise Espectral
7.
J Med Chem ; 64(22): 16349-16379, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34779640

RESUMO

The search for new antimicrobials is imperative due to the emergent resistance of new microorganism strains. In this context, revisiting known classes like 8-hydroxyquinolines could be an interesting strategy to discover new agents. The 8-hydroxyquinoline derivatives nitroxoline and clioquinol are used to treat microbial infections; however, these drugs are underused, being available in few countries or limited to topical use. After years of few advances, in the last two decades, the potent activity of clioquinol and nitroxoline against several targets and the privileged structure of 8-hydroxyquinoline nucleus have prompted an increased interest in the design of novel antimicrobial, anticancer, and anti-Alzheimer agents based on this class. Herein, we discuss the current development and antimicrobial structure-activity relationships of this class in the perspective of using the 8-hydroxyquinoline nucleus for the search for novel antimicrobial agents. Furthermore, the most investigated molecular targets concerning 8-hydroxyquinoline derivatives are explored in the final section.


Assuntos
Anti-Infecciosos/farmacologia , Desenvolvimento de Medicamentos , Oxiquinolina/farmacologia , Anti-Infecciosos/química , Bactérias/classificação , Bactérias/efeitos dos fármacos , Fungos/classificação , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Oxiquinolina/química , Relação Estrutura-Atividade
8.
Dalton Trans ; 50(45): 16451-16458, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34709268

RESUMO

8-Hydroxyquinoline (8-HQ, oxine) is a small, monoprotic, bicyclic aromatic compound and its relative donor group orientation imparts impressive bidentate metal chelating abilities that have been exploited in a vast array of applications over decades. 8-HQ and its derivatives have been explored in medicinal applications including anti-neurodegeneration, anticancer properties, and antimicrobial activities. One long established use of 8-HQ in medicinal inorganic chemistry is the coordination of radioactive isotopes of metal ions in nuclear medicine. The metal-oxine complex with the single photon emission computed tomography (SPECT) imaging isotope [111In]In3+ was developed in the 1970s and 1980s to radiolabel leukocytes for inflammation and infection imaging. The [111In][In(oxine)3] complex functions as an ionophore: a moderately stable lipophilic complex to enter cells; however, inside the cell environment [111In]In3+ undergoes exchange and remains localized. As new developments have progressed towards radiopharmaceuticals capable of both imaging and therapy (theranostics), 8-HQ has been re-explored in recent years to investigate its potential to chelate larger radiometal ions with longer half-lives and different indications. Further, metal-oxine complexes have been used to study liposomes and other nanomaterials by tracking these nanomedicines in vivo. Expanding 8-HQ to multidentate ligands for highly thermodynamically stable and kinetically inert complexes has increased the possibilities of this small molecule in nuclear medicine. This article outlines the historic use of metal-oxine complexes in inorganic radiopharmaceutical chemistry, with a focus on recent advances highlighting the possibilities of developing higher denticity, targeted bifunctional chelators with 8-HQ.


Assuntos
Compostos Inorgânicos/química , Oxiquinolina/química , Compostos Radiofarmacêuticos/química , Humanos , Ligantes , Metais/química , Nanoestruturas/química
9.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681939

RESUMO

Solution chemical properties of two novel 8-hydroxyquinoline-D-proline and homo-proline hybrids were investigated along with their complex formation with [Rh(η5-C5Me5)(H2O)3]2+ and [Ru(η6-p-cymene)(H2O)3]2+ ions by pH-potentiometry, UV-visible spectrophotometry and 1H NMR spectroscopy. Due to the zwitterionic structure of the ligands, they possess excellent water solubility as well as their complexes. The complexes exhibit high solution stability in a wide pH range; no significant dissociation occurs at physiological pH. The hybrids and their Rh(η5-C5Me5) complexes displayed enhanced cytotoxicity in human colon adenocarcinoma cell lines and exhibited multidrug resistance selectivity. In addition, the Rh(η5-C5Me5) complexes showed increased selectivity to the chemosensitive cancer cells over the normal cells; meanwhile, the Ru(η6-p-cymene) complexes were inactive, most likely due to arene loss. Interaction of the complexes with human serum albumin (HSA) and calf-thymus DNA (ct-DNA) was investigated by capillary electrophoresis, fluorometry and circular dichroism. The complexes are able to bind strongly to HSA and ct-DNA, but DNA cleavage was not observed. Changing the five-membered proline ring to the six-membered homoproline resulted in increased lipophilicity and cytotoxicity of the Rh(η5-C5Me5) complexes while changing the configuration (L vs. D) rather has an impact on HSA or ct-DNA binding.


Assuntos
Aminoácidos/química , Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Complexos de Coordenação/farmacologia , Oxiquinolina/química , Ródio/química , Rutênio/química , Antineoplásicos/química , Apoptose , Proliferação de Células , Neoplasias do Colo/patologia , Complexos de Coordenação/química , Humanos , Células Tumorais Cultivadas
10.
Molecules ; 26(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34443314

RESUMO

Despite the common use of salens and hydroxyquinolines as therapeutic and bioactive agents, their metal complexes are still under development. Here, we report the synthesis of novel mixed-ligand metal complexes (MSQ) comprising salen (S), derived from (2,2'-{1,2-ethanediylbis[nitrilo(E) methylylidene]}diphenol, and 8-hydroxyquinoline (Q) with Co(II), Ni(II), Cd(II), Al(III), and La(III). The structures and properties of these MSQ metal complexes were investigated using molar conductivity, melting point, FTIR, 1H NMR, 13C NMR, UV-VIS, mass spectra, and thermal analysis. Quantum calculation, analytical, and experimental measurements seem to suggest the proposed structure of the compounds and its uncommon monobasic tridentate binding mode of salen via phenolic oxygen, azomethine group, and the NH group. The general molecular formula of MSQ metal complexes is [M(S)(Q)(H2O)] for M (II) = Co, Ni, and Cd or [M(S)(Q)(Cl)] and [M(S)(Q)(H2O)]Cl for M(III) = La and Al, respectively. Importantly, all prepared metal complexes were evaluated for their antimicrobial and anticancer activities. The metal complexes exhibited high cytotoxic potency against human breast cancer (MDA-MB231) and liver cancer (Hep-G2) cell lines. Among all MSQ metal complexes, CoSQ and LaSQ produced IC50 values (1.49 and 1.95 µM, respectively) that were comparable to that of cisplatin (1.55 µM) against Hep-G2 cells, whereas CdSQ and LaSQ had best potency against MDA-MB231 with IC50 values of 1.95 and 1.43 µM, respectively. Furthermore, the metal complexes exhibited significant antimicrobial activities against a wide spectrum of both Gram-positive and -negative bacterial and fungal strains. The antibacterial and antifungal efficacies for the MSQ metal complexes, the free S and Q ligands, and the standard drugs gentamycin and ketoconazole decreased in the order AlSQ > LaSQ > CdSQ > gentamycin > NiSQ > CoSQ > Q > S for antibacterial activity, and for antifungal activity followed the trend of LaSQ > AlSQ > CdSQ > ketoconazole > NiSQ > CoSQ > Q > S. Molecular docking studies were performed to investigate the binding of the synthesized compounds with breast cancer oxidoreductase (PDB ID: 3HB5). According to the data obtained, the most probable coordination geometry is octahedral for all the metal complexes. The molecular and electronic structures of the metal complexes were optimized theoretically, and their quantum chemical parameters were calculated. PXRD results for the Cd(II) and La(III) metal complexes indicated that they were crystalline in nature.


Assuntos
Antibacterianos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Teoria da Densidade Funcional , Etilenodiaminas/síntese química , Simulação de Acoplamento Molecular , Oxiquinolina/síntese química , Oxiquinolina/farmacologia , Antibacterianos/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/química , Etilenodiaminas/química , Etilenodiaminas/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Ligantes , Testes de Sensibilidade Microbiana , Conformação Molecular , Oxiquinolina/química , Difração de Pó , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
11.
Dalton Trans ; 50(17): 5828-5834, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949529

RESUMO

In the quest for rare earth metal complexes with enhanced cancer chemotherapeutic properties, the discovery of seven lanthanide(iii) complexes bearing 8-hydroxyquinoline-N-oxide (NQ) and 1,10-phenanthroline (phen) ligands, i.e., [SmIII(NQ)(phen)(H2O)Cl2] (Ln1), [EuII(NQ)(phen)(H2O)Cl2] (Ln2), [GdIII(NQ)(phen)(H2O)Cl2] (Ln3), [DyIII(NQ)(phen)(H2O)Cl2] (Ln4), [HoIII(NQ)(phen)(H2O)Cl2] (Ln5), [ErIII(NQ)(phen)(H2O)Cl2] (Ln6), and [YbIII(NQ)(phen)(H2O)Cl2] (Ln7), as potential anticancer drugs is described. Complexes Ln1-Ln7 exhibit high antiproliferative activity against cisplatin-resistant A549/DDP cells (IC50 = 0.025-0.097 µM) and low toxicity to normal HL-7702 cells. Moreover, complex Ln1, and to a lesser extent Ln7, can upregulate the expression of LC3 and Beclin1 and downregulate p62 to induce apoptosis in cisplatin-resistant A549/DDP cell lines, which is related to the cell autophagy-inducing properties of Ln1 and Ln7. Furthermore, in vivo assays suggest that Ln1 significantly inhibits A549/DDP xenograft tumor growth (56.5%). These results indicate that lanthanide(iii) complex Ln1 is a promising candidate as an anticancer drug against cisplatin-resistant A549/DDP cells.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Elementos da Série dos Lantanídeos/química , Oxiquinolina/química , Fenantrolinas/química , Células A549 , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Humanos
12.
J Mater Chem B ; 9(21): 4365-4379, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34013945

RESUMO

As a radiotherapy sensitizer, gold-based nanomaterials can significantly enhance radiotherapy efficacy. However, the severe hypoxia and the low accumulation of nanomedicine at the tumor site caused by poor perfusion have seriously affected the effect of radiotherapy. Tumor vascular normalization has emerged as a new strategy for increasing the efficacy of radiotherapy due to its ability to relieve hypoxia and increase perfusion. However, a commonly used approach of blocking a single growth factor to induce vascular normalization is limited by the compensation effect of evasive drug resistance. In this work, we developed a strategy to simultaneously reduce the expression of multi-angiogenic growth factors by suppressing the oxidative stress effects in tumor. Herein, gold nanoparticles (Au NPs) were modified with 8-hydroxyquinoline (HQ) to obtain AuHQ. This system has a simple structure and could inhibit the production of reactive oxygen species in tumor cells by chelating iron ions, and attenuating the expression of angiopoietin-2, vascular endothelial growth factor and basic fibroblast growth factor in human umbilical vein endothelial cells. In vivo, AuHQ treatment increased pericyte coverage, modulated tumor leakage while alleviating tumor hypoxia and increased blood perfusion, thereby inducing tumor vascular normalization. Consequently, Au accumulation of the AuHQ group increased by 1.94 fold compared to that in the control group. Furthermore, the antitumor efficacy of radiotherapy was increased by 38% compared to the Au NPs-treated group. Therefore, AuHQ may be a promising nanomedicine for future cancer treatment.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Neoplasias/irrigação sanguínea , Oxiquinolina/química , Radiossensibilizantes/farmacologia , Radioterapia/métodos , Animais , Sobrevivência Celular/efeitos dos fármacos , Feminino , Células Hep G2 , Xenoenxertos , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos ICR , Neoplasias/metabolismo , Neoplasias/patologia , Radiossensibilizantes/química , Radioterapia/normas , Espécies Reativas de Oxigênio/metabolismo
13.
Bioorg Chem ; 112: 104962, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33992968

RESUMO

The current paper deals with 8-hydroxyquinoline derived p-halo N4-phenyl substituted thiosemicarbazones, their crystal structures, spectral characterization and in vitro cytotoxic studies of Co(III), Ni(II) and Cu(II) complexes. The molecular structures of the ligands, (E)-4-(4-halophenyl)-1-((8-hydroxyquinoline-2-yl)methylene)thiosemicarbazones (halo = fluoro/chloro/bromo) are determined by single crystal X-ray diffraction method. The crystal structures reveal that the ligands are non-planar and exist in their thioamide tautomeric forms. The various physicochemical investigations of the synthesized complexes reveal metal to ligand stoichiometry to be 1:2 in Co(III) complexes whereas 1:1 in Ni(II) and Cu(II) complexes. The ligands coordinate in a tridentate NNS fashion around Co(III) centers to form an octahedral geometry and square planar geometry around Ni(II) and Cu(II) metal centers. The oxidation of Co(II) to Co(III) is observed on complexation. The synthesized compounds are subjected to in vitro cytotoxicity studies. When compared to bare ligands, the complexes show enhancement of the antiproliferative activity against MCF-7, breast cancer cell lines. The Co(III) complexes of fluoro and bromo derivatives of ligands have displayed remarkable results with roughly two fold increase in their activity in correlation to the standard drug, Paclitaxel. Moreover, the fluorescence microscopy images of cells stained with acridine orange-ethidium bromide suggest an apoptotic mode of cell death.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Metais Pesados/farmacologia , Oxiquinolina/farmacologia , Tiossemicarbazonas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Metais Pesados/química , Microscopia de Fluorescência , Modelos Moleculares , Estrutura Molecular , Oxiquinolina/química , Relação Estrutura-Atividade , Tiossemicarbazonas/química
14.
Nanotheranostics ; 5(1): 27-35, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391973

RESUMO

With the rapid development of anti-cancer cell-based therapies, such as adoptive T cell therapies using tumor-infiltrating T cells, T cell receptor transduced T cells, and chimeric antigen receptor T cells, there has been a growing interest in imaging technologies to non-invasively track transferred cells in vivo. Cell tracking using ex vivo cell labeling with positron emitting radioisotopes for positron emission tomography (PET) imaging has potential advantages over single-photon emitting radioisotopes. These advantages include intrinsically higher resolution, higher sensitivity, and higher signal-to-background ratios. Here, we review the current status of recently developed Zirconium-89 (89Zr)-oxine ex vivo cell labeling with PET imaging focusing on its applications and future perspectives. Labeling of cells with 89Zr-oxine is completed in a series of relatively simple steps, and its low radioactivity doses required for imaging does not interfere with the proliferation or function of the labeled immune cells. Preclinical studies have revealed that 89Zr-oxine PET allows high-resolution in vivo tracking of labeled cells for 1-2 weeks after cell transfer both in mice and non-human primates. These results provide a strong rationale for the clinical translation of 89Zr-oxine PET-based imaging of cell-based therapy.


Assuntos
Oxiquinolina/química , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/química , Zircônio/química , Animais , Humanos , Camundongos
15.
Bioorg Chem ; 108: 104633, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33513476

RESUMO

8-Hydroxyquinoline (8-HQ) is a significant heterocyclic scaffold in organic and analytical chemistry because of the properties of chromophore and is used to detect various metal ions and anions. But from the last 2 decades, this moiety has been drawn great attention of medicinal chemists due to its significant biological activities. Synthetic modification of 8-hydroxyquinoline is under exploration on large scale to develop more potent target-based broad spectrum drug molecules for the treatment of several life-threatening diseases such as anti-cancer, HIV, neurodegenerative disorders, etc. Metal chelation properties of 8-hydroxyquinoline and its derivatives also make these potent drug candidates for the treatment of various diseases. This review comprises 8-hydroxyquinoline derivatives reported in the literature in last five years (2016-2020) and we anticipate that it will assist medicinal chemists in the synthesis of novel and pharmacologically potent agents for various therapeutic targets, mainly anti-proliferative, anti-microbial, anti-fungal and anti-viral as well as for the treatment of neurodegenerative disorders.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Oxiquinolina/farmacologia , Anti-Infecciosos/química , Antineoplásicos/química , Bactérias/efeitos dos fármacos , Química Farmacêutica , Fungos/efeitos dos fármacos , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/química , Oxiquinolina/química , Vírus/efeitos dos fármacos
16.
Eur J Med Chem ; 212: 113153, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33453603

RESUMO

Metal ion chelators based on 8-hydroxyquinoline (8-HQ) have been widely explored for the treatment of many diseases. When aimed at being developed into potent anticancer agent, a largely unmet issue is how to avoid nonspecific chelation of metal ions by 8-HQ in normal cells or tissues. In the current work, a two-step strategy was employed to both enhance the anticancer activity of 8-HQ and improve its cancer cell specificity. Considering the well-known anticancer activity of nitric oxide (NO), NO donor furoxan was first connected to 8-HQ to construct HQ-NO conjugates. These conjugates were screened for their cytotoxicity, metal-binding ability, and NO-releasing efficiency. Selected conjugates were further modified with a ROS-responsive moiety to afford prochelators. Among all the target compounds, prodrug HQ-NO-11 was found to potently inhibit the proliferation of many cancer cells but not normal cells. The abilities of metal chelation and NO generation by HQ-NO-11 were confirmed by various methods and were demonstrated to be essential for the anticancer activity of HQ-NO-11. In vivo studies revealed that HQ-NO-11 inhibited the growth of SW1990 xenograft to a larger extent than 8-HQ. Our results showcase a general method for designing novel 8-HQ derivatives and shed light on obtaining more controllable metal chelators.


Assuntos
Antineoplásicos/farmacologia , Quelantes/farmacologia , Óxido Nítrico/metabolismo , Oxiquinolina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quelantes/síntese química , Quelantes/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Oxiquinolina/síntese química , Oxiquinolina/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
17.
Acta Pharmacol Sin ; 42(5): 824-831, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32901086

RESUMO

Clinical tracking of chimeric antigen receptor (CAR) T cells in vivo by positron emission tomography (PET) imaging is an area of intense interest. But the long-lived positron emitter-labeled CAR T cells stay in the liver and spleen for days or even weeks. Thus, the excessive absorbed effective dose becomes a major biosafety issue leading it difficult for clinical translation. In this study we used 68Ga, a commercially available short-lived positron emitter, to label CAR T cells for noninvasive cell tracking in vivo. CAR T cells could be tracked in vivo by 68Ga-PET imaging for at least 6 h. We showed a significant correlation between the distribution of 89Zr and 68Ga-labeled CAR T cells in the same tissues (lungs, liver, and spleen). The distribution and homing behavior of CAR T cells at the early period is highly correlated with the long-term fate of CAR T cells in vivo. And the effective absorbed dose of 68Ga-labeled CAR T cells is only one twenty-fourth of 89Zr-labeled CAR T cells, which was safe for clinical translation. We conclude the feasibility of 68Ga instead of 89Zr directly labeling CAR T cells for noninvasive tracking of the cells in vivo at an early stage based on PET imaging. This method provides a potential solution to the emerging need for safe and practical PET tracer for cell tracking clinically.


Assuntos
Rastreamento de Células/métodos , Compostos Radiofarmacêuticos/química , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/metabolismo , Animais , Linfoma de Burkitt/terapia , Linhagem Celular Tumoral , Estudos de Viabilidade , Radioisótopos de Gálio/química , Humanos , Imunoterapia Adotiva , Oxiquinolina/química , Oxiquinolina/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/química , Compostos Radiofarmacêuticos/farmacocinética , Linfócitos T/química , Zircônio/química
18.
Mol Imaging Biol ; 23(3): 361-371, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33216285

RESUMO

PURPOSE: Mesenchymal stem cell-derived EVs (MSC-EVs) are demonstrated to have similar therapeutic effect as their cells of origin and represent an attractive cell-free stem cell therapy. With the potential to be the future medical regimen, the information of fate and behavior of MSC-EVs in the living subject should be urgently gathered. This study aimed to track MSC-EVs by 111In-labeling and µSPECT/CT imaging. PROCEDURES: Wharton's jelly-MSC-EVs (WJ-MSC-EVs) were isolated using Exo-Prep kit followed by characterization of expressing markers and size. After labeled by 111In-oxine, 111In-EVs were injected into C57BL/6 mice followed by µSPECT/CT imaging. Organs were then taken out for ex vivo biodistribution analysis. RESULTS: The radiochemical purity of 111In-EVs was > 90 % and remained stable up to 24 h. The image results showed that with injection of 111In-EVs, the signal mainly accumulated in the liver, spleen, and kidney, compared to that in lung and kidney after 111In-oxine injection. The ex vivo biodistribution showed the similar pattern to that of imaging. Chelation of free 111In with EDTA was found necessary to reduce the nonspecific accumulation of signal. CONCLUSION: This study demonstrated the feasibility of radiolabeling WJ-MSC-EVs with 111In-oxine for in vivo imaging and quantitative analysis in a mouse model. This simple and quick labeling method preserves the characteristics of WJ-MSC-EVs. The results in this study provide a thorough and objective basis for future clinical study.


Assuntos
Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/citologia , Compostos Organometálicos/química , Oxiquinolina/análogos & derivados , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Linhagem da Célula , Proliferação de Células , Meios de Cultivo Condicionados , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Nanopartículas , Oxiquinolina/química , Distribuição Tecidual , Geleia de Wharton
19.
Nucl Med Biol ; 90-91: 31-40, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32979725

RESUMO

BACKGROUND: Advances in immunology and cell-based therapies are creating a need to track individual cell types, such as immune cells (neutrophils, eosinophils, chimeric antigen receptor (CAR) T cells, etc.) and stem cells. As the fate of administered cells remains largely unknown, nuclear imaging could determine the migration and survival of cells in patients. [89Zr]Zr(oxinate)4, or [89Zr]Zr-oxine, is a radiotracer for positron emission tomography (PET) that has been evaluated in preclinical models of cell tracking and could improve on [111In]In-oxine, the current gold standard radiotracer for cell tracking by scintigraphy and single-photon emission computed tomography (SPECT), because of the better sensitivity, spatial resolution and quantification of PET. However, a clinically usable formulation of [89Zr]Zr-oxine is lacking. This study demonstrates a 1-step procedure for preparing [89Zr]Zr-oxine and evaluates it against [111In]In-oxine in white blood cell (WBC) labelling. METHODS: Commercial [89Zr]Zr-oxalate was added to a formulation containing oxine, a buffering agent, a base and a surfactant or organic solvent. WBC isolated from 10 human volunteers were radiolabelled with [89Zr]Zr-oxine following a clinical radiolabelling protocol. Labelling efficiency, cell viability, chemotaxis and DNA damage were evaluated in vitro, in an intra-individual comparison against [111In]In-oxine. RESULTS: An optimised formulation of [89Zr]Zr-oxine containing oxine, polysorbate 80 and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) was developed. This enabled 1-step radiolabelling of oxine with commercial [89Zr]Zr-oxalate (0.1-25 MBq) in 5 min and radiotracer stability for 1 week. WBC labelling efficiency was 48.7 ± 6.3%, compared to 89.1 ± 9.5% (P < 0.0001, n = 10) for [111In]In-oxine. Intracellular retention of 89Zr and cell viability after radiolabelling were comparable to 111In. There were no significant differences in leukocyte chemotaxis or DNA damage between [89Zr]Zr-oxine or [111In]In-oxine. CONCLUSIONS, ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: Our results demonstrate that [89Zr]Zr-oxine is a suitable PET alternative to [111In]In-oxine for WBC imaging. Our formulation allows rapid, stable, high-yield, single-step preparation of [89Zr]Zr-oxine from commercially available 89Zr. This will facilitate the clinical translation of cell tracking using [89Zr]Zr-oxine.


Assuntos
Rastreamento de Células/métodos , Compostos Organometálicos/química , Oxiquinolina/análogos & derivados , Tomografia por Emissão de Pósitrons/métodos , Linhagem Celular Tumoral , Sobrevivência Celular , Composição de Medicamentos , Humanos , Marcação por Isótopo , Leucócitos/citologia , Leucócitos/metabolismo , Oxiquinolina/química , Tomografia Computadorizada de Emissão de Fóton Único
20.
J Inorg Biochem ; 211: 111175, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32858466

RESUMO

The rare earth metal Gd(III), Yb(III), Lu(III), Eu(III), Tb(III) and Ho(III) complexes 1-6 with 2-((2-(pyridin-2-yl)hydrazono)methyl)quinolin-8-ol (H-L) as ligands were synthesized. The in vitro cytotoxicity assay indicated that the cytotoxicity of 1 was equivalent to cisplatin and higher than that of H-L and other complexes towards T24 tumor cells. The mechanism study indicated that 1 caused significant up-regulation of the proteins p27, p21 and p53 in T24 cells and cell cycle arrest in G2 phase. In addition, 1 induced effective T24 cells apoptosis via mitochondrial dysfunction pathway, which was indicated by changes in mitochondrial membrane potential (Δψ), reactive oxygen species (ROS), intracellular Ca2+ and the mitochondria-related proteins (including cytochrome C (Cyt C), B-cell lymphoma-2 (Bcl-2), Bcl-2-associated x (Bax) and apoptotic protease activating factor-1 (Apaf-1)). Moreover, 1 could activate caspase-3/8/9 in T24 cells. Therefore, complex 1 is a promising and potent anticancer drug candidate.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Metais Terras Raras/farmacologia , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Oxiquinolina/química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Complexos de Coordenação/química , Humanos , Metais Terras Raras/química , Neoplasias/química , Neoplasias/metabolismo , Oxiquinolina/farmacologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA